Plant Success

  • HOME
  • ABOUT
    • PEOPLE
    • GOVERNANCE
    • CENTRE CHARTER
  • RESEARCH
    • Predicting Phenotypes
      • Integration of physiology and development of traits underpinning plant success
      • Land plant genetic network innovations
      • Connecting plant water relations phenotype to whole plant success – Bryophytes
      • Connecting plant water relations phenotype to whole plant success
      • Domestication underground – exploring how modification of plant hormone signalling, including during plant breeding, influences beneficial plant-microbe symbiosis
      • Evolution and function of molecular networks that control potential and water allocation in plant growth
      • Impacts of crop domestication on water management
      • Model emulation
      • Complex mathematical networks
      • Discovering new pathways to enhance breeding predictions by integrating genome to phenome and hierarchical biological models
    • Mechanism and Network Prediction
      • Evolution of eucalyptus clade relative to heat and water stress
      • Predicting adaptive trajectories in natural systems
      • Phylogenomics of photoperiod response
      • Adaptations to heat and water stress in the Andropogoneae grasses
      • Leaf cuticle properties
      • Homology detection, alignment and ancestral state reconstruction of genetic networks
    • Responsible Innovation
      • Genomic analysis of mechanisms of adaptive evolution
      • Genome manipulation technology development and application to analysis of stress response networks
      • Genome editing for complex trait enhancement
      • Quantitative biology and the law
      • Access to genetic resources
      • Freedom to operate with genetic technologies
      • Molecular markers/sequence data
    • Capacity
      • Improved phylogenetic profiling to better understand and predict the genotype to phenotype map
      • Andropogonaeae focused grass pan-genome
  • RESOURCES
    • publications
    • News
    • Annual Reports
    • Reference Materials
      • Authorder – authorship process
      • Laboratory Standard Operating Procedures
      • Legal Fact Sheets
      • Won’t Walk Past
  • EVENTS
    • Talking Plant Science
    • People, Plants and the Law
  • OPPORTUNITIES
  • CONTACT

Professor Christine Beveridge presents at Island of Ideas

18 October 2022 / Published in News

Professor Christine Beveridge presents at Island of Ideas

Climate change is predicted to lead to a net decrease in food production, globally. Tropical zones will move from optimal growing conditions into extreme and prolonged summer temperatures. This will cause drops in productivity in areas where the bulk of malnourished people live. Growing seasons will likely get longer in temperate zones as climate warms but any gains will likely be offset by extreme weather events like drought, flood and bushfire. More species are documented as ‘on the move’ due to these changing climatic conditions, many are vital to our food security.

Centre Director, Professor Christine Beveridge joined The University of Tasmania’s Island of Ideas in October 2022, to discuss how the Centre for Plant Success will help to tackle the problems we are facing under climate change.

Tagged under: news, seminar

What you can read next

Future food and the art of plant mechanics
March 2023 Newsletter
Next generation scientists to tackle plant problems

sign up to our newsletter

Stay up to date with our latest events, research publications and job opportunities.

General Enquiries
admin@plantsuccess.org

CONTACT US

The ARC Centre of Excellence for Plant Success in Nature and Agriculture acknowledges the Traditional Owners of Country throughout Australia and their continuing connection to lands, waters and communities. We pay our respect to Aboriginal and Torres Strait Islander cultures and to Elders past, present and emerging.

Copyright @ 2023 ARC Centre of Excellence for Plant Success in Nature and Agriculture

Privacy Policy | Code of Conduct

TOP