

LSOP Title	Protoplast Isolation
LSOP No.	LSOP04
Version	1.1
Location	UQ Node/Centre-wide
Policy/Procedure	<u>UQ- Equipment</u>
Link	<u>UQ -waste</u>
	<u>OGTR</u>
Risk Assessment	
Approved by	Milos Tanurdzic
Date Approved	11/10/2021
Date Effective	02/06/2021
Next Review Date	02/06/2026
Contact for Assistance	plantsuccess@uq.edu.au

1.0 Scope

This procedure outlines how to isolate Arabidopsis protoplasts including how to create protoplast isolation solutions.

This LSOP does not cover how to analyse or use protoplasts in assays.

2.0 Definitions

Col-0 – Columbia-0 *Arabidopsis*

Ler – Landsberg erecta *Arabidopsis*

KCl - Potassium Chloride

CaCl₂ – Calcium Chloride

NaOH – Sodium Hydroxide

MES – a type of selective medium (basal salt)

MgCl₂ – Magnesium Chloride

ppm – plant preservative mixture

3.0 Materials and Equipment

- 1. Tweezers
- 2. Red Electrical Tape
- 3. Scalpel
- 4. Petri Dish
- 5. Platform Shaker
- 6. Microscope
- 7. Falcon Tubes
- 8. Centrifuge
- 9. Yellow 50µm CellTrics filter
- 10. Pipette and Pipette Tips

4.0 Prescribed Actions

- 1. Using a tweezer, take three-five leaves from Col-0 and three-five leaves from Ler (3-5 weeks old)
- 2. Stabilise upper epidermis to tape (red electric tape)
- 3. Cut around the leaf as close to the tissue as possible
- 4. Make very light incisions around vasculature near the petiole: one horizontal incision where the leaf meets the petiole and two horizontal incisions either side of the primary vein this prevents the petiole being taken up with the tape
- 5. Place another piece of tape onto the lower epidermis, lightly press down on to the tape to ensure the entire surface of the lower epidermis is fixed to the tape
- 6. Pull the tape fixed to the lower epidermis away from the leaf holding the petiole for support (peeling away the lower epidermis)

- 7. Transfer the peeled leaves to a petri dish containing 10ml of enzyme solution and $10\mu l$ of plant preservative mixture (ppm).
- 8. Shake for 60 minutes on a platform shaker at 40rpm until protoplasts are released.

- 9. Check presence of protoplasts with microscope (if solution is green you probably don't need to do this)
- 10. Filter solution using yellow 50μm CellTrics filter into 15ml falcon tubes

 NB: Blow first part of solution through then the remainder of the solution will flow through
- 11. Centrifuge protoplasts for 5 minutes at 100RCP (room temperature, acceleration & deceleration: 3)

12. Remove supernatant and wash with 10ml of enzyme buffer solution (count cells before next step)

13. Centrifuge protoplasts for 10 minutes at 100RCP (room temperature, acceleration & deceleration: 3)

- 14. Remove supernatant and resuspend pellet in MMg solution to a final concentration of 2 to the 5x10⁵ cells/ml⁻¹
- 15. Store cells in 15ml falcon tubes at -4°c, store horizontally to prevent cells sinking to the bottom of the tube and prevent hypoxia

See appendix for solutions

5.0 Appendix

Solutions:

Enzyme buffer solution (500ml):

- 1. 400 mM mannitol (36.5 g)
- 2. 20 mM KCl (0.76 g)
- 3. 10 mM CaCl₂ (0.74 g)

4. 20 mM MES (1.95 g)

- 5 1157/ 1: 1 1: 1 4 4 4 4 (01)
- 5. pH 5.7 (adjusted with 1 M NaOH)
- 7. 0.5% ppm (2.5ml)

6. Autoclave

Enzyme cocktail (100ml):

- 8. Cellulase 1% (1 g)
- 9. Macerozyme 0.25% (0.25 g)
- 10. Adjust to 100 ml with enzyme buffer solution
 - 11. Filter the solution (0.45 μm)
 - 12. Aliquot by 12 ml into 15ml falcon tubes and store at -20°C

MMg Solution (500ml):

- 13. 15 mM MgCl₂ (1.52 g) (0.09%)
- 15. 400 mM mannitol (36.5 g)
- 16. pH 5.7 (adjusted with 1 M NaOH)
 - 17. Autoclave
 - 18. 0.5% ppm (2.5ml)

14. 4 mM MES (0.4 g)

