Plant Success

  • HOME
  • ABOUT
    • PEOPLE
    • GOVERNANCE
    • CENTRE CHARTER
  • RESEARCH
    • Predicting Phenotypes
      • Integration of physiology and development of traits underpinning plant success
      • Land plant genetic network innovations
      • Connecting plant water relations phenotype to whole plant success – Bryophytes
      • Connecting plant water relations phenotype to whole plant success
      • Domestication underground – exploring how modification of plant hormone signalling, including during plant breeding, influences beneficial plant-microbe symbiosis
      • Evolution and function of molecular networks that control potential and water allocation in plant growth
      • Impacts of crop domestication on water management
      • Model emulation
      • Complex mathematical networks
      • Discovering new pathways to enhance breeding predictions by integrating genome to phenome and hierarchical biological models
    • Mechanism and Network Prediction
      • Evolution of eucalyptus clade relative to heat and water stress
      • Predicting adaptive trajectories in natural systems
      • Phylogenomics of photoperiod response
      • Adaptations to heat and water stress in the Andropogoneae grasses
      • Leaf cuticle properties
      • Homology detection, alignment and ancestral state reconstruction of genetic networks
    • Responsible Innovation
      • Genomic analysis of mechanisms of adaptive evolution
      • Genome manipulation technology development and application to analysis of stress response networks
      • Genome editing for complex trait enhancement
      • Quantitative biology and the law
      • Access to genetic resources
      • Freedom to operate with genetic technologies
      • Molecular markers/sequence data
    • Capacity
      • Improved phylogenetic profiling to better understand and predict the genotype to phenotype map
      • Andropogonaeae focused grass pan-genome
  • RESOURCES
    • publications
    • News
    • Annual Reports
    • Reference Materials
      • Authorder – authorship process
      • Laboratory Standard Operating Procedures
      • Legal Fact Sheets
      • Won’t Walk Past
  • EVENTS
    • Talking Plant Science
    • People, Plants and the Law
  • OPPORTUNITIES
  • CONTACT

Talking Plant Science: John Passioura

Loading Events

« All Events

  • This event has passed.

Talking Plant Science: John Passioura

5 September @ 3:00 pm - 4:00 pm

  • « National Science Quiz 2023
  • Centre for Plant Success Webinar Series: Hannah Drieberg and Sivakumar Sukumaran »

The ARC Centre of Excellence for Plant Success in Nature and Agriculture is proud to bring you the next seminar in our Talking Plant Science series presented by Dr John Passioura.

Translational Research in Agriculture: How effectively does it work?

‘Translational research’ became an increasingly common term when it was realised that much agriculturally inspired basic research failed to contribute to the improvement of crops. Most of the failure has come from laboratory-based attempts to ameliorate abiotic stresses. Dealing with biotic stress has been much more successful; the control of pests and weeds is often enabled by transforming crops with single genes, for such genes have little or no influence on a crop’s metabolism. By contrast, abiotic stress varies with the weather; i.e. crops respond systemically, over a range of levels of organisation (e.g. organelles, cells, tissues, organs), with many feedbacks and feedforwards. Drought is the most pervasive form of abiotic stress. There are several thousand papers that have searched, ineffectively, for ‘drought resistance’, a term that usually defies useful definition. By contrast, dealing with a limited water supply (e.g. inadequate seasonal rainfall), rather than with ‘drought’, has effectively increased water-limited yield through agronomic innovation based on improving water-use efficiency. A major reason for the predominant failure of translational research from laboratory to field is that the peer-review system is too narrow; i.e. reviewers have the same backgrounds as the authors. Effective translation requires the addition of reviewers who can assess effective pathways from laboratory to field.

Dr John Passioura

John Passioura graduated with a bachelor’s degree in agricultural science (1958) followed by a Ph.D. in soil chemistry (1963) from Melbourne University, Australia. He joined CSIRO in 1966 after 3 years as a Postdoc in Europe. He currently holds an emeritus appointment at ANU in Canberra, and was formerly Leader of the Crop Adaptation Program in CSIRO. His research has ranged over: soil chemistry and physics (transport of water and nutrients in soil and uptake by roots); plant physiology (water relations, drivers of growth rate and adaptation to abiotic stresses); and wheat pre-breeding and agronomy directed at improving water-limited productivity of dryland crops. He was elected Fellow of the Australian Academy of Science in 1994.  He spent 6 years on partial secondment to the Australian Grains Research and Development Organization (GRDC) where he oversaw a portfolio of projects on soil and water management which aimed at improving both the productivity and environmental performance of Australian grain farms. Since then he has written several reviews relating to crop productivity and the pursuit of effective agricultural research. He has also worked as a consultant to the CGIAR, undertaking high-level reviews of several of their programs, existing or prospective.

  • Google Calendar
  • iCalendar
  • Outlook 365
  • Outlook Live

Details

Date:
5 September
Time:
3:00 pm - 4:00 pm
Event Category:
Talking Plant Science
Event Tags:
Event, Talking Plant Science

Venue

Zoom

Organizer

Plant Success
Email
admin@plantsuccess.org
View Organizer Website
  • « National Science Quiz 2023
  • Centre for Plant Success Webinar Series: Hannah Drieberg and Sivakumar Sukumaran »

sign up to our newsletter

Stay up to date with our latest events, research publications and job opportunities.

General Enquiries
admin@plantsuccess.org

CONTACT US

The ARC Centre of Excellence for Plant Success in Nature and Agriculture acknowledges the Traditional Owners of Country throughout Australia and their continuing connection to lands, waters and communities. We pay our respect to Aboriginal and Torres Strait Islander cultures and to Elders past, present and emerging.

Copyright @ 2023 ARC Centre of Excellence for Plant Success in Nature and Agriculture

Privacy Policy | Code of Conduct

TOP